专家探索用算法度量方言差距 提议创建统一框架
创建一个基本的自动化语音识别系统,包括设定一组关键的本地语言,当一种未知方言出现时,分析它距离这一系列核心方言中的哪些方言较近,就可以用合适的核心方言ASR模型识别出这种未知方言的内容。 方言距离是一个开放问题,例如人们通常在直觉上认为上海话与杭州话之间的距离比上海话和北京话之间的距离更近。从实用性来讲,距离越接近的两种方言,其自动语音识别引擎在交叉使用时也可以得到更好的效果。如此一来,利用少数核心方言的自动语音识别引擎来转写邻近的各种未知方言,就是方言ASR识别问题的潜在解决方案之一。 金融科技集团信也科技(NYSE:FINV)首席科学家王春平表示,本次大赛的目的是寻找数据驱动的最佳算法和模型,更好地理解方言和口音特征,提升用户体验;长期来讲,以一个核心方言语音助理来支持数字电视所有中小型方言语音识别转写,找到最优的核心方言语音识别布局。 但信也科技算法科学家倪博溢表示,ASR转写存在的一个实际问题是,通用ASR模型建立在普通话数据基础上,无法对方言进行准确转写。目前,商业解决方案还不能满足大部分方言的转写,大多数可用的汉语ASR模型要么不支持方言,要么只复盖数量有限的方言。 理论上,最理想的解决方案是为每一种方言建立ASR引擎,只要有语音和对应的文字,就可以训练出每一种方言的模型,但这种方式成本高昂、耗时耗力。为一种方言单独建模,往往需要考虑该地区的方言是否较为统一、地区经济和科研实力是否允许。在此基础上,研究团队提出了一种基于语音识别技术的方言模型,通过对方言声纹特征进行分析,可以快速准确地获取方言的发音特征。 (编辑:银川站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |