赶超海森伯极限的量子精密测量
科技进步到了今天,很多重要发展都是由于精度的提高而促成的。然而从激光干涉引力波天文台 (LIGO) 建成到第一次探测到引力波整整花了17年时间,这是科学家们不断改进装置以提升探测精度的结果。最近科学家们在引力波探测中使用了量子压缩的光源,进一步提升了探测精度,使得现在几乎每周都可以观测到引力波。 这个形式的物理理解为:N个粒子同时处于0状态,或者同时处于1状态,这两种可能性之间是量子相干叠加的。显然N个没有关联的个体不可能处于这样的状态,因为它们中每个都可能处于0或1状态,造成总的状态有2N种可能。这样一种量子资源原则上可以实现海森伯极限的测量精度,但是一个现实的困难是,N很大的量子态很难确定性地产生。利用光子可以实现大约10个光子的纠缠,但是产生和探测效率都极低。即便可以确定性地产生和探测10光子纠缠,一个经典的激光脉冲可能含有1010以上的光子,即便取0.5次方的反比,不确定度也比10光子纠缠达到的1/10小4个数量级。因而现阶段使用N00N态进行精密测量只是原理上演示了一种潜在的优势,并不具有实际价值。 事实上,量子力学还允许两个演化不同的时序之间的量子叠加,这点显然不同于经典世界的因果关系。在经典世界里,如果两个事情A和B之间存在关联,那么它们之间的孰因孰果是非常难以确定的。 这样一种新的量子结构已经被证明在各种量子信息过程中可以提供进一步的量子增强。比如降低量子计算问题中的复杂度,提升量子通信中通过信道的互信息量。这些研究成果可以帮助科学家更好地理解量子信息的特性,从而进一步开发量子计算机。 (编辑:银川站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |