量子扩散 使独立集问题的解在量子态空间中自然 涌现
考虑一个社群,在它中使用最顶端的个体,网络中的边代表两人互相认识,而网络中一群相互认识的人,我们可以用一个由相应顶点两两连接构成的子图表示,并称之为团。如果想知道一个社交网络中有哪些共同朋友的群体以及其中最大的群体是哪个,我们该如何搜索寻找呢?这便是著名的最大团问题(Maximum Clique Problem),它属于一类NP难(NP-hard)问题。 Nondeterministic Polynomial复杂度问题,简称NP问题,Nondeterministic意味着没有可遵循的特定规则来猜测该问题的解,一般认为不存在精确算法可以高效求解它。著名的整数质因子分解就是一个NP问题。NP难问题本身不是NP问题,但是如果任何一个NP难问题被证明是一个P问题,那么所有的NP问题就一定是P问题,即P=NP。(目前P=NP并未得到证明,且多数人相信PNP。)在图论中,最大团问题可用于社交网络分析,以识别具有共同兴趣、爱好或信仰的人群,除此之外,这样的最大团方程式问题在高能量计算化学、高能量生物信息学等领域也有诸多应用。 绝热量子计算的时间复杂度是指完成绝热演算所需的时间,与哈密顿量的本征能隙有关。具体地说,如果系统处于基态,在绝热演化过程中,基态与第一激发态之间的能隙Δ将给出系统演化速度的上限,当Δ越小时,系统的演化速度就越慢。 所有基态(对应独立集问题所有解)的相干叠加态an|gn,最后,我们通过量子投影测量读出这个波函数中包含的解的信息,从而解决相应的独立集问题。这便是我们最近实验工作中用于求解独立集问题的量子算法的基本演算流程。由于量子计算机具有非常强大的运算能力,因此它可以在任何时间、任何地点进行计算。 (编辑:银川站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |