全面的同态加密适用于隐私计算的实现
隐私计算中的完同态加密为加密数据提供量子安全级的计算,保证明文数据及其衍生计算结果永远不会公开,并且在基础设施受到破坏的情况下保持安全,不会被修改和/或破坏。大多数完同态加密方案都是基于lattice 数学方式描述的(序理论和抽象代数子学科研究的一种抽象),被认为量子计算安全的,并被认为是后量子密码学。 通过人工智能、大数据和分析,可以从数据中提取出有价值的见解,甚至可以从多个不同的来源中提取,而不需要暴露数据或者在必要时暴露底层的评估代码。 1. 当前的数据安全模型 不仅失效,而且很快失去相关性 在当今 IT 基础设施中,常见的行业标准和基于边界的安全机制是由数千个集成在一起的、不断变化的硬件和软件组件构建的。它们主要依赖于加密技术,依赖于现有硬件难以找到离散对数和/或大整数的素数。另外,这些组成部分的数量和质量在不断变化,唯一不知道的是这些变化是否会被识别和利用,基础设施的破坏点始终存在。 2. 从同态加密开始 在1978年,Ronald L. Rivest, Len Adelman, 和 Michael L. Dertouzos提出了直接对加密数据进行计算的想法。他们发现,在 RSA 加密下,两个加密数字可以相乘,结果将等同于使用相同密钥加密的明文产品。 对明文数据的一组操作的结果等于对其加密形式执行然后解密的那些相同操作的结果。 1. 因此,RSA 加密表现出了相乘同态的属性,进而认识到: 有了同态加密,即可以在加密数据上进行计算的能力,对数据的访问可以与对数据的处理分离开来,使计算可以在加密数据上进行,而不需要使用密钥解密。 3. 同态加密的基础 同态加密提供了非对称公钥加密支持的所有功能。当前的非对称公钥加密基于查找离散对数或大整数的因数分解,有五个属性: 密钥生成: (sk,pk)->K (λ) ,其中,带有随机种子参数 λ 的密钥生成函数 K 生成一个由密钥 sk 和公钥 pk 组成的密钥对。 加密: c <- E(pk,m) ,其中加密函数 E 使用参数 pk 和明文消息 m 来产生加密的消息密文 c。 解密: m <- D(sk,c) ,其中解密函数 D 带有参数 sk 和 c 产生 m。 正确性: m = D (sk,E (pk,m))表示所有密钥对、消息和加密随机性。 语义安全: 对 m {0,1}的所有单位消息 m,集合0和1的成员 E (pk,0)和 E (pk,1)必须是计算上不可区分的,并且必须是概率随机的(例如,每个明文消息 m 应该有许多加密消息 c)。 对于同态加密而言,还必须添加两个属性: 评估: 除了 K、 E 和 D 函数外,还要加上 V 来进行评估。 正确性修正: D (sk,V (pk,f,c1,... cn)) = f (m1,... ,mn) ,其中解密函数 D 带有参数 sk,计算函数 V 带有参数 pk; 函数 f,其中 f F (一组具有同态性质的高效可计算函数) ; 密文 c1,... ,cn 等于参数 m1,... ,mn 的 f函数计算结果。 对于乘法同态而言,这将是 D (sk,HE-MULTIPLY (pk,MULTIPLY,E (pk,m1) ,E (pk,m2))) = MultiplY (m1,m2)。 因此,为了实现不受限制的同态计算,必须选择 F 作为一组完整的函数来完成所有的计算。由于集合{ XOR,AND }是图灵完备的,实现这个目标所需的两个函数是位加法(相当于布尔异或)和位乘法(相当于布尔与)。任何可计算函数都可以通过 XOR和AND的组合来创建。同态计算系统是图灵完备的,XOR和AND是必需的,但算法不需要直接用这些底层语义来定义,当前一般用布尔电路、整数算法或实数/复数算法来定义计算。 (编辑:银川站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |