如何预防针对AI模型的对抗性攻击
随着人工智能技术不断向前推进,其对现如今的社会也造成了深远的影响,但也引起了研究人员的担忧,因为随着AI技术的深入应用,与之相应的对抗性攻击也变得越来越普遍。 在对抗性攻击中,攻击者会用多种方法生成对抗样本,例如快速梯度符号方法(FGSM)、基于梯度的优化方法(BIM)、投影算法攻击(PGD)等。这些方法都是通过对原始数据进行扰动,从而欺骗AI模型。根据威胁分子了解AI模型的不同方式,我们可以将AI对抗性攻击分为以下两类: 1、白盒攻击 在白盒攻击中,威胁分子已经充分了解AI模型的内部工作原理,知道其规格、训练数据、处理技术和详细参数,能够设计专门针对该模型的对抗性攻击。 2、黑盒攻击 如果攻击者只能获取AI模型的输入和输出,无法获取其内部结构和参数,就会使用黑盒攻击方法。在这种攻击场景下,不可预测的攻击者常常需要使用一些基于人工智能的元智能模型或迁移学习的技术工具来生成对抗性恶意软件的样本。 恶意攻击者可以使用不同的技术来执行对抗性攻击,主要包括: 1、投毒 攻击者可以操纵(毒化)AI模型的一小部分输入数据,以破坏其训练数据集和准确性。最常见的投毒形式是后门投毒,即使极少一部分训练数据受到影响。在很长时间里,AI模型仍然可以继续给出高度准确的结果,直到它在接触特定的触发器时被“激活”而功能失灵。 2、代理 攻击者也可以使用代理模式来规避AI模型的安全防护系统。通过使用这种技术,威胁分子可以创建与目标模型非常相似的版本,即代理模型。代理模型的结果、参数和行为与被复制的原始模型高度相似。这种攻击多被用于针对原始目标AI模型。一些研究人员认为,这种攻击可能来自黑客的恶意软件,他们利用这种恶意软件来窃取数据。 (编辑:银川站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |